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We consider the two-dimensional flow produced by the slow horizontal motion 
of a vertical plate of height 2b through a vertically stratified (p = po( 1 - pz)) non- 
diffusive viscous fluid. Our results are valid when U2/pgb2 < Ub/v < 1, where U is 
the speed of the plate and v the kinematic viscosity of the fluid. Upstream of the 
body we find a blocking column of length 10-2b4/( Uvlpg). This column is com- 
posed of cells of closed streamlines. The convergence of these cells near the tips 
of the plate leads to alternate jets. The plate itself is embedded in a vertical shear 
layer of thickness (Uv/,8g)* (< b). In  the upstream portion of this layer the 
vertical velocities are of order U and in the downstream portion of order 
Ub/( Uv/pg)* ( B  U). The flow is uniform and undisturbed downstream of this 
layer. 

1. Introduction 
The flow produced by the motion of bodies through stratified fluids has 

excited some interest in recent years. The study of these flows has generally 
taken one of three theoretical approaches. The first approach considers the flow 
as inviscid and steady, takes into account non-linear effects, and is generally 
based on the use of Long’s equation, for example, Long (1953). A nearly uniform 
upstream velocity profile is assumed and theoretical and experimental results 
are in good agreement. However, a t  very low internal Froude numbers one 
expects a blocking column upstream of the body, which, in the absence of 
viscosity, should extend to infinity; this conflicts with the assumption of a nearly 
uniform upstream velocity. The second approach considers the inviscid linearized 
initial-value problem, for example, Bretherton (1967). This enables us to study 
the formation of the blocking column. However, when viscosity is put into the 
problem it is assumed that the Prandtl number equals one, and while this gives 
a perfect analogy with a rotating problem it is not very appropriate for the 
stratified case, especially if the stratification is due to salinity variations. In  this 
case, the Prandtl, or rather the Schmidt, number is of order 1000. The third 
approach considers the viscous low Reynolds number problem (Martin & Long 
1968). This approach has considered the slow horizontal motion of horizontal 
plates and does not shed much light on the nature of blocking. This work uses the 
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third approach but considers a vertical body and thus should reveal some aspects 
of the blocking column. The fluid is assumed non-diffusive, which seems reason- 
able for the high Schmidt number case. 

2. Specification of the problem 
We consider a flat plate of height 2b moving slowly to the left with speed U 

through R linearly stratified non-diffusive fluid. The flow, as viewed from a 
Cartesian co-ordinate system attached to the plate, is steady. The plate is of 

4 h 

I; 1 
FIGURE 1. Geometry of the flow field. 

infinite extent in the y direction, see figure 1. The stratification is sufficiently 
small so that the Boussinesq approximation is valid, and v is assumed constant. 
The governing equations are then 

where 

DU ap 
Po- = - - + f V t ,  

Dt ax 

DW ap 
ODt ax 

p ~ = - - - p g + p w ,  

au aw -+- = 0, 
ax a2 

~ a a  a 2  a 2  

Dt ax az ax2 azz 
-=u-+w- and V2=-+- 

We now introduce the stream function 3 by 

u = - aqlaz, = a p p x .  

Integrating ( 1  d )  leads t o  
P = P ( 3 : ) .  

(3) 

Differentiating ( l a )  and ( l b )  with respect to z and x respectively and 
subtracting the results yields 

D - dp a? 
p -VZ$ = -=g-++V4$. 

' D t  d$ ax 
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The boundary conditions on (1) and (4) are as follows: 
- 

as 1x1, 1x1 +m, $+- UZ, P + P o ( l - P Z ) ;  

and a t  x = 0, 1x1 < 1, a$/az = a$/& = 0. 

We evaluate (4 a)  as x + - co and find that 

(6) 
P -  

P = P O f P O ~ $ .  

We now non-dimensionalize as follows : 

(7 )  
(u', w') = (u, w ) / U ,  
( x ' , ~ ' )  = (x,z)/b.  

$' = $/Ub, 

Equation (4 b )  then becomes 

We now require that U be sufficiently small so that 

U2/,8gb2 < Uv//3gb3. (9) 

This is exactly the same as requiring Ublv < 1. We define a non-dimensionalized 
perturbation stream function, $, as follows: 

$ ( X I ,  2') = 3' +XI. 
Substituting this into (8) subject to condition (9) 
( X I ,  z'), we obtain 

where L 3 b/( Uv/,8g)*. 

The boundary conditions on $ are as follows: 

v4$ - ~3 a$/ax = 0,  

as IxI, IzI+-m, $+o; 
a t  x = 0,  I z I  G 1, $ = Z, a$/ax = 0. 

(10) 

and dropping the primes on 

We shall solve (11) subject to (12) in the following manner: Since @(z,z) is an 
odd function of 2, we introduce its Fourier sine transform. We then find two 
solutions for $, one valid for x < 0 and one for x > 0. We then assume $ ( O ,  x )  
and a$(O,z)/ax are unknown functions which are specified at x = 0, I z I  > 1 in 
such a manner that the up- and downstream solutions for $ along with their 
first three partial derivatives with respect to x are continuous for x = 0,  (21 > 1. 
The governing equation itself indicates that all higher-order x derivatives will 
then be continuous. This leads to a coupled set of linear integro-differential 
equations for the Hilbert transforms of $(O,  z ) ,  a $ ( O ,  z)/ax. We then limit our 
interest to cases where L > 1 and indicate an iterative procedure for the solution 
of this set. We can show that this set of equations only need be solved if we are 
interested in the flow near the tips of the plate. We exclude this region from 
consideration and compute the flow everywhere else. 
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3. Solution of the problem 

problem : 
The following functions and relationships will be used in the solution of this 

$(x,z)sinKzdK, 

F ( K ,  x) sin Kz dK, 

F ( K )  = F ( K ,  O ) ,  

Q ( K )  = [BF(K, x)/ax]l,,, 
- _  

(13 i )  

The integrals in (13 h-k) are principal values. F ( z )  and G(z )  are the Hilbert trans- 
forms of $(O,  z )  and a$(O, z )pz  respectively, Titchmarsh (1937, p. 119) shows that 
( 13 h-k) follow from ( 13f-9). 

Substituting (1 3 b )  into (1 1) leads to the following solution for P ( K ,  x): 

The a(K)'s are the roots of the polynomial 

C ~ ~ - - Z K ~ E ~ - L ~ C I + K ~  = 0. 

a, and a2 are complex conjugates for all real K and have negative real parts which 
become more negative as K increases. cc4 and a3 are real for all real K and increase 
monotonically with K .  For a more complete discussion of these roots, see 
Janowitz (1968). As K/L+O we can show 

a1 z e+ni L, a2 M efni L, a, z K4/L3, a., M L. (16) 
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For the up- and downstream solutions for $ ( O ,  z )  and a@(O, z) /ax to be equal at  
x = 0, we require: 

For the up- and downstream solutions for a2$/ax2 and a3$/8x3 to be equal for 
x = 0, 121 > 1, we obtain after much algebraic manipulation: 

for IzI 2 1 4-------iL3F(z) = (2/n)'IOm (I,~(K)+121,F(K))cosKzdK, (18a) 

4- -$L3G(z )  = (2/n)*/ (I2@K)+I3F(K))c0sK~dK, (18b) 

a2G(z) 
a22 

PF(z)  m 

a24 0 

where I JK)  = 2[O(K)]4 K - 4K2, ( 1 8 4  

For x = 0, JzI < 1 we must satisfy ( 5 b ) ,  i.e. 

@(o,z)  = 2, a$(o,z)/aX = 0. 

Substituting these conditions into ( 1 3 4  k) yields for 1x1 < 1 

We now solve for P(z)  and G(x) for 1x1 < 1 as functions of F ( z )  and G ( z )  for 1x1 2 1. 
In  terms of these functions, we obtain, after some algebraic manipulations (see 
Tricomi 1957, pp. 173-185) for 1x1 < 1, 

at, 

D iy 2t(t2-1)*G(t) 
at, (1-22)9 1T 1 (1-22)'(t2-22) 

G(2) = ~ - - 

where c and 
(13i,  k); we obtain for 1x1 < 1, as required, 

are, thus far, arbitrary constants. We now substitute (20) into 

$ ( o , ~ )  = 2, a$(o,q/ax = 0; 
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and for 1x1 2 1 
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G(t) at. 
1-D + a$- 

ax 

Let us briefly summarize what remains to be accomplished. If we obtain F(x) 
and G(z) for 1x1 2 1 we can obtain $ ( O ,  z) ,  a$(O, x) /ax  from (21). From (13a, e) we 
obtainF(K), a(K) .  Thence, from (17) and (14), we obtainF(K,x), and from (13b) 
$(x, x ) .  We specify certain conditions on $(O,  z )  and a$(O, z)/ax as x approaches 
1.0 from above (l+). We first require that $ ( O ,  1+) = 1 and a$(O, l+)/ax = 0. If 
we integrate the integrals in (21) by parts (letting 

u = F(t ) ,  dv = dtZt(t2- 1)4/(t2-9), etc.) 

and require that 

and 

dF 
at 

(t2- l)$-(t)dt, 

we can show that these conditions are satisfied. Differentiating the result for 
$(O, x )  and a$(O, z)/ax with respect to z leads to 

and 

We now require that a$/azl,=,+ = 1 and a(ay?/ax)/azl,=,+ remain finite. 
If we now integrate the integrals in (23) by parts and require that 

and 

we can show that these conditions are satisfied. Thus, as x - f  1+, gt-+07 ~ ' 3 0 ,  
wt+O and awllax remains finite. As our last condition, we require that 
azc'(0, z)/azla,l+ remain finite. Proceeding as before, we find 

We also require that F(z)  and G(x) remain finite for large z .  Equation (24) then 
determines the solutions of (18) uniquely. 
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4. Solution for large L 
We now restrict ourselves to the case where L > 1. This means that the vertical 

dimension of the plate is much larger than (Uv//3g)$, which we shall see is the 
thickness of the shear layers occurring in the fluid. We have already restricted 
ourselves to the case where Ub/v < 1. Now requiring L 8 1 implies 

U2/,8gb2 < Ub/v < 1. 

We can solve (18) subject to (24) using (21) by the following iterative procedure. 
First neglect the right-hand side of (18 a,  b) and solve the resulting equations 
subject to (24). This yields first approximations to G(z)  and F(z) ,  say Fo(z), G,(x), 
and we find 

both functions vanishing for L I IzI - 11 2 10. With these functions we compute 
$,(O, z) ,  a$,(O, z)/ax, po(K),  and G,(K) from (21) and (13a, e). We can now com- 
pute the right-hand side of (18a,b) with po(K),  B,(K) and then solve (18a,b) 
subject to (24) with this right-hand side. We now find F-(z) = 0(1/L4) and 
G,(z) = O(Lt) within the layer LI IzI -11 = O(1) and for 1x1-1 = O ( l ) ,  
Fl(z) = O(l/L), G,(z) = O(1). We can recompute the right-hand side of (18a,b) 
and go through the iteration again and find that the F(z)  and G(z) retain 
the same orders of L (to lowest order) as before, only the numerical values 
changing. We will show that the numerical values of P(z) and G(z) determine 
$(x,z) only in the immediate vicinity of the tips of the plate, a region we now 
exclude from consideration. We now summarize. 

F,(z) = O(l/Lt), G,(z) = O(L*), 

For L I IzI - 11 = O(l ) ,  

(25 a)  I F(z )  = 0(1/Lg), G(z)  = O(L*), 
- 
$‘(O,z) = -z+$(O,z)  = O(l/Lt), 

a p ( o ,  2) /ax = o(L+), U’ = - a p / a Z  = o(L+). 

For I IzI - 11 = 0(1) ,  

(25 b) I F(x)  = 0(1/L), G(z)  = 0(1) ,  
$ ( O , x )  = z-(z2-  1)9+0(1/L), 

a$l-(o, 4 / a x  = O ( l ) ,  
U’ = - a p / a z  = (~/(~2--1)4)+0(i /L) .  

We now show that this is sufficient information to determine $(x, z )  away from 
the tips of the plate. 

5. The downstream solution 
Using (13b), (l4a) and (17) we may write for x 2 0, 

I2 
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where 

and 

G ( K )  = O(1). 
($n-)4Jl(K)/K is the Fourier sine transform of 

?'= - 1.0 
1.5 - 

z 

- -0.4 
$'= -0.1 

0.5 - 

0 .  
0 1 .o 2.0 3.0 4.0 

- 
2 

FIGURE 2. The streamline pattern downstream of the plate. Dashed line 
indicates position of horizontal shear layer. 

The contributions to $(x ,  z )  outside the shear layer I 1x1 - 1) = O(l /L)  come from 
the Fourier transforms in the region K = O( 1). In this region we may take 

The flow in the shear layer is determined by behaviour of the Fourier transform 
for K = O(L). To determine this behaviour would require an explicit solution for 
P(x), G(z). Since we can understand the features of the flow without these details, 
we do not solve for them. Hence, from ( 2 6 a ) ,  for x 2 0 and L I Iz( - 11 9 1, 

a, = &iL, a2 = e-4TiL. 

where D = Lx. The solution reveals a vertical shear layer of thickness (Uu//3g)$ 
on the downstream side of the plate. The vertical velocities in this layer 
(a$/ax)  are order L and downstream of this layer $' = - z ,  or uniform flow exists. 
Some streamlines are plotted in figure 2. The horizontal dashed line denotes the 
shear layer. We note that the streamlines oscillate slightly about their equi- 
librium heights. We also note for 1x1 2 3 the streamlines are disturbed by less 
than 5 %  of the equilibrium heights for all x. 
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6. The upstream solution 
Using (13b), (lab) and (17) we can write for x < 0 

and 

179 

B(K) = O(1). 

For I IzI - 11 = 0 ( 1 )  and lLxl = O ( l ) ,  the thin vertical shear layer upstream and 
adjacent to the plate, the contributions to $(x, z )  come from the Fourier trans- 
forms in the range K = O(1). Here we may take a3 = 0, a4 = L and we obtain 

- 
$'(x, z )  = - + $(x, z )  

= - (z~- l )*+O(l /L)  (121 > l ) ,  

= O(l/L) (14 < 1). (29) 

For L ] 1x1 - 1 I = O( l), explicit solutions for F(z)  and G(z) are again required and 
we again exclude this area from attention. Now consider the region upstream of 
this thin vertical shear layer, i.e. [LxJ 9 1. 

Then a4 1x1 = O(Lx) 3 1 and we can neglect the contributions to $(x, z )  from 
the coefficients of eaas. Now a 3 x  g (K4/L3)x = (K/L)4 (Lx). Hence, contributions 
to $(x,z)  when K = O ( L )  are multiplied by easx z e--ILxl and are exponentially 
small. So we may therefore take 

for all z for lLxl 9 1. The streamline pattern computed from (10) and (30) is 
shown in figure 3 with the horizontal axis taken as Jx/L3J$. We do not compute 
@'(x,z) for IzI < 1, Ix/L314 < 0.03 since the computedvalues of $' z are on 
the order of the error in Simpson's rule evaluation of (30). 

The curves for 3' = 0 and 3' = - 1 are shown together with some other 
information. 

First we see a blocking column in front of the plate extending to a distance of 
1x/L31f = 0.360. Outside this region zc' > 0 and the fluid particles all move in 
downstream direction. The blocking column itself is composed of cells of closed 
streamlines. The boundaries of these cells, i.e. the curves 3' = 0,  and the curve 

= + 0.030 were computed from (30). The direction of the motion in the other 
two cells is indicated. These cells converge towards the tip of the plate. Near the 
tip of the plate the motion in these cells would show up as horizontal alternating 

- 

- 

12-2 
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jets. The maximum calculated value of $' in the blocking column is approxi- 
mately + 0.05, indicating that the density variation in the column is only 1/20 of 
that occurring over the same range of z, upstream of the column. The = - 1 
streamline is also plotted. The dashed line in this figure is the locus of maximum 

1 

0 
0.5 0.4 0.3 0.2 0.1 0 

(14~~1 )t 
FIGURE 3. The streamline pattern upstream of the plate. Dashed line is locus of maximum 

horizontal velocity. Horizontal velocity at Iz/L31t = 0.40 is also shown. 

0.8 - 
0.6 - 

b 
3 0.4 - 

0.2 - 
O 

-0.2 - 
0: 

-0.4 4 
FIGURE 4. The upstream horizontal velocity a t  z = 0. 

2.0 

1.5 

Z 
1 .o 

0.5 

horizontal velocity outside the blocking column. We also have plotted the horiz- 
ontal velocity profile at  Iz/L31& = 0.40. The maximum velocity at this station is 
1.3U. In figure 4 the horizontal velocity at x = 0 is plotted versus Iz/L3If. Up- 
stream of Ix/L31) = 0,360 the velocity increases monotonically towards 1.0. 
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7. Conclusion 
Thus, the non-diffusive solution paints an interesting picture of the flow 

including horizontal and vertical shear layers of thickness (Vv/Pg)* as well) 
as a blocking column composed of cells of closed streamlines and uniform 
flow slightly downstream of the body. 

An important question concerning the nature of the blocking column remains. 
which cannot be answered within the context of the non-diffusive solution. We 
evaluated p ( p )  far upstream of the body, the only place we could do this. Our 
solution then shows a blocking column composed of cells of streamlines which do 
not originate at infinity upstream. Thus, we cannot show that (6) describes the 
relationship between p and pi in the column. What is worse, closed streamlines 
imply overturning which may lead to a breakdown to turbulence. 

This impasse is similar to the situation which arises when Long’s (1953) 
equation is used to study the stratified flow over obstacles in a channel at  low 
internal Froude numbers (based on the channel height). There, as here, the 
density is related to the stream function a t  infinity upstream and (unstable) 
regions of closed streamlines are predicted. Experimentally, we observe a break- 
down to turbulence in the unstable regions and the flow as predicted outside of 
these regions. This may occur in our case. 

More probably, due to the small velocities, the small density fluctuations, and 
to  the presence of stagnation points predicted in the blocking column, diffusive 
effects are important there. The flow field within the column should change, 
possibly eliminating the unstable density configuration, and producing a more 
uniform density distribution. Outside of the column the effects of diffusion 
should remain small and the flow field should agree with that predicted here as 
long as U2/pgb2 < Ub/v < 1. Of course, we must await the (difficult) diffusive 
solution to substantiate this conclusion. 
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